Sains Malaysiana 53(9)(2024): 3173-3181

http://doi.org/10.17576/jsm-2024-5309-21

 

Kinematic Differences between Gradual and Impulsive Coronal Mass Ejections: The Role of Flares

(Perbezaan Kinematik antara Lentingan Jisim Korona Berperingkat dan Impulsif: Peranan Nyalaan)

 

Z.S. HAMIDI1,2,*, N. MOHAMAD ANSOR1,2 & N.N.M. SHARIFF2,3

 

1School of Physics and Material Science, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

3Academy of Contemporary Islamic Studies (ACIS), Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

Received: 15 May 2024/Accepted: 13 August 2024

 

Abstract

Coronal Mass Ejections (CMEs) are significant solar events that involve intense explosions of magnetic fields and mass particles out from the corona. These events are known to be the main driver of space weather and other disturbances experienced by the Earth. Generally, there are two types of CMEs – gradual and impulsive, and each type has different properties which is important to be studied on as they have potential to cause breakdowns in our systems. This study is aimed to analyze and differentiate the kinematic behavior of gradual and impulsive CME with the association of weak and strong flares. Data collection is made through SOHO LASCO catalogues and STEREO database which include velocity, acceleration and angular width as well as images. At the end of this study, it can be deduced that impulsive CME (specifically associated with strong flare) is the most prominent event that has greatest angular width and average velocity. The associated flare has contributed more heat energy to speed up the magnetic energy conversion which results to high velocity of plasma discharge. Since fast CME carries huge amount of momentum during the ejection, impulsive CMEs also experience decelerations due to loss of momentum that has been transferred to background solar wind.

 

Keywords: Coronal Mass Ejections; gradual CME; impulsive CME; solar flare

 

Abstrak

Letusan Jisim Korona (CME) ialah peristiwa suria yang ketara yang melibatkan letupan kuat medan magnet dan zarah jisim keluar daripada korona. Peristiwa ini diketahui sebagai pemacu utama cuaca angkasa dan gangguan lain yang dialami oleh Bumi. Secara umumnya, terdapat dua jenis CME – beransur-ansur dan impulsif, dan setiap jenis mempunyai sifat berbeza yang penting untuk dikaji kerana ia berpotensi menyebabkan kerosakan dalam sistem Bumi kita. Kajian ini bertujuan untuk menganalisis dan membezakan tingkah laku kinematik CME beransur-ansur dan impulsif dengan perkaitan suar lemah dan kuat. Pengumpulan data dibuat melalui katalog SOHO LASCO dan pangkalan data STEREO yang merangkumi halaju, pecutan dan lebar sudut serta imej. Pada akhir kajian ini, dapat disimpulkan bahawa CME impulsif (khususnya dikaitkan dengan suar kuat) adalah peristiwa paling menonjol yang mempunyai lebar sudut dan halaju purata yang paling besar. Nyalaan yang berkaitan telah menyumbangkan lebih banyak tenaga haba untuk mempercepatkan penukaran tenaga magnetik yang menghasilkan halaju tinggi nyahcas plasma. Memandangkan CME pantas membawa jumlah momentum yang besar semasa lonjakan, CME impulsif juga mengalami nyahpecutan akibat kehilangan momentum yang telah dipindahkan ke angin suria latar belakang.

 

Kata kunci: CME beransur-ansur; CME impulsif; Letusan Jisim Korona; suar suria

 

REFERENCES

Andrews, M.D. & Howard, R.A. 2001. A two-type classification of LASCU coronal mass ejection. Space Science Reviews 95(1/2): 147-163.

Compagnino, A., Romano, P. & Zuccarello, F. 2017. A statistical study of CME properties and of the correlation between flares and CMEs over solar cycles 23 and 24. Solar Physics 292(1): 5.

Hamidi, Z.S. & Shariff, N.N.M. 2014. The propagation of an impulsive coronal mass ejections (CMEs) due to the high solar flares and Moreton waves. International Letters of Chemistry, Physics and Astronomy 33: 118-126.

Hudson, H.S., Bougeret, J-L. & Burkepile, J. 2006. Coronal mass ejections: Overview of observations. Space Science Reviews 123(1-3): 13-30.

Jain, R., Aggarwal, M. & Kulkarni, P. 2010. Relationship between CME dynamics and solar flare plasma. Res. Astron. Astrophys. 10(5): 473-483.

Lin, J. & Forbes, T.G. 2000. What causes deceleration of coronal mass ejection. Bulletin of the American Astronomical Society 32: 842.

Mohamad Ansor, N. & Hamidi, Z.S. 2022. Effects of CME-induced geomagnetic storm on geomagnetic induced current at high and middle latitudes. Journal of Physics: Conference Series 2287: 012035.

Mohamad Ansor, N., Hamidi, Z.S. & Shariff, N.N.M. 2023. Characteristics of different groups of flare-CME in the minimum to rising phase of solar cycle 24. Sains Malaysiana 52(3): 981-992.

Mohamad Ansor, N., Hamidi, Z.S. & Shariff, N.N.M. 2019. The impact on climate change due to the effect of global electromagnetic waves of solar flare and coronal mass ejections (CMEs) phenomena. Journal of Physics: Conference Series 1298: 012019.

Nicewicz, J. & Michalek, G. 2016. Classification of CMEs based on their dynamics. Solar Physics 291(5): 1417-1432.

Sheeley, N.R., Walters, J.H., Wang, Y‐M. & Howard, R.A. 1999. Continuous tracking of coronal outflows: Two kinds of coronal mass ejections. Journal of Geophysical Research: Space Physics 104(A11): 24739-24767.

Shen, F., Wu, S.T., Feng, X. & Wu, C-C. 2012. Acceleration and deceleration of coronal mass ejections during propagation and interaction. Journal of Geophysical Research: Space Physics 117(A11). https://doi.org/10.1029/2012JA017776

Solar and Heliospheric Observatory. 2020. Measuring the Motion of a Coronal Mass Ejection. Accessed on 27 July 2020.

Syed Ibrahim, M., Shanmugaraju, A., Moon, Y-J., Vrsnak, B. & Umapathy, S. 2018. Properties and relationship between solar eruptive flares and coronal mass ejections during rising phase of solar cycles 23 and 24. Advances in Space Research 61(1): 540-551.

Temmer, M., Scolini, C., Richardson, I.G., Heinemann, S.G., Paouris, E., Vourlidas, A., Bisi, M.M., Al-Haddad, N., Amerstorfer, T., Barnard, L., Burešová, D., Hofmeister, S.J., Iwai, K., Jackson, B.V., Jarolim, R., Jian, L.K., Linker, J.A., Lugaz, N., Manoharan, P. K., Mays, M.L., Mishra, W., Owens, M.J., Palmerio, E., Perri, B., Pomoell, J., Pinto, R.F., Samara, E., Singh, T., Sur, D., Verbeke, C., Veronig, A.M. & Zhuang, B. 2023. CME propagation through the heliosphere: Status and future of observations and model development. Advances in Space Research. In Press. https://doi.org/10.1016/j.asr.2023.07.003

Tousey, R. 1973. The Solar Corona. Space Research XIII 2: 713-730.

Vršnak, B., Ruždjak, D., Sudar, D. & Gopalswamy, N. 2004. Kinematics of coronal mass ejections between 2 and 30 solar radii. Astronomy & Astrophysics 423(2): 717-728.

Webb, D.F. & Howard, T.A. 2012. Coronal mass ejections: Observations. Living Reviews in Solar Physics 9(3): 83.

Zhang, J., Dere, K.P., Howard, R.A. & Vourlidas, A. 2004. A study of the kinematic evolution of coronal mass ejections. The Astrophysical Journal 604(1): 420-432.

 

 *Corresponding author; email: zetysh@uitm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next