Sains Malaysiana 53(9)(2024): 3173-3181
http://doi.org/10.17576/jsm-2024-5309-21
Kinematic Differences
between Gradual and Impulsive Coronal Mass Ejections: The Role of Flares
(Perbezaan Kinematik antara Lentingan Jisim Korona Berperingkat dan Impulsif: Peranan Nyalaan)
Z.S. HAMIDI1,2,*, N. MOHAMAD
ANSOR1,2 & N.N.M. SHARIFF2,3
1School of Physics and
Material Science, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
2Institute of Science, Universiti Teknologi MARA, 40450
Shah Alam, Selangor, Malaysia
3Academy of
Contemporary Islamic Studies (ACIS), Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
Received: 15 May 2024/Accepted: 13 August 2024
Abstract
Coronal Mass Ejections (CMEs) are significant solar
events that involve intense explosions of magnetic fields and mass particles
out from the corona. These events are known to be the main driver of space
weather and other disturbances experienced by the Earth. Generally, there are
two types of CMEs – gradual and impulsive, and each type has different
properties which is important to be studied on as they have potential to cause
breakdowns in our systems. This study is aimed to analyze and differentiate the
kinematic behavior of gradual and impulsive CME with the association of weak
and strong flares. Data collection is made through SOHO LASCO catalogues and
STEREO database which include velocity, acceleration and angular width as well
as images. At the end of this study, it can be deduced that impulsive CME
(specifically associated with strong flare) is the most prominent event that
has greatest angular width and average velocity. The associated flare has
contributed more heat energy to speed up the magnetic energy conversion which
results to high velocity of plasma discharge. Since fast CME carries huge
amount of momentum during the ejection, impulsive CMEs also experience
decelerations due to loss of momentum that has been transferred to background
solar wind.
Keywords: Coronal Mass Ejections; gradual CME;
impulsive CME; solar flare
Abstrak
Letusan Jisim Korona (CME) ialah peristiwa suria yang ketara yang melibatkan letupan kuat medan magnet dan zarah jisim keluar daripada korona. Peristiwa ini diketahui sebagai pemacu utama cuaca angkasa dan gangguan lain yang dialami oleh Bumi. Secara umumnya, terdapat dua jenis CME – beransur-ansur dan impulsif, dan setiap jenis mempunyai sifat berbeza yang penting untuk dikaji kerana ia berpotensi menyebabkan kerosakan dalam sistem Bumi kita. Kajian ini bertujuan untuk menganalisis dan membezakan tingkah laku kinematik CME beransur-ansur dan impulsif dengan perkaitan suar lemah dan kuat. Pengumpulan data dibuat melalui katalog SOHO LASCO dan pangkalan data STEREO yang merangkumi halaju, pecutan dan lebar sudut serta imej. Pada akhir kajian ini, dapat disimpulkan bahawa CME impulsif (khususnya dikaitkan dengan suar kuat) adalah peristiwa paling menonjol yang mempunyai lebar sudut dan halaju purata yang paling besar. Nyalaan yang berkaitan telah menyumbangkan lebih banyak tenaga haba untuk mempercepatkan penukaran tenaga magnetik yang menghasilkan halaju tinggi nyahcas plasma. Memandangkan CME pantas membawa jumlah momentum
yang besar semasa lonjakan, CME impulsif juga mengalami nyahpecutan akibat kehilangan momentum yang telah dipindahkan ke angin suria latar belakang.
Kata kunci: CME beransur-ansur; CME impulsif; Letusan Jisim Korona; suar suria
REFERENCES
Andrews, M.D. & Howard, R.A. 2001. A two-type
classification of LASCU coronal mass ejection. Space Science Reviews 95(1/2): 147-163.
Compagnino, A., Romano, P. &
Zuccarello, F. 2017. A statistical study of CME properties and of the
correlation between flares and CMEs over solar cycles 23 and 24. Solar
Physics 292(1): 5.
Hamidi, Z.S. & Shariff, N.N.M. 2014. The
propagation of an impulsive coronal mass ejections (CMEs) due to the high solar
flares and Moreton waves. International Letters of Chemistry, Physics and
Astronomy 33: 118-126.
Hudson, H.S., Bougeret, J-L.
& Burkepile, J. 2006. Coronal mass ejections: Overview of observations. Space
Science Reviews 123(1-3): 13-30.
Jain, R., Aggarwal, M. & Kulkarni, P. 2010.
Relationship between CME dynamics and solar flare plasma. Res. Astron. Astrophys. 10(5): 473-483.
Lin, J. & Forbes, T.G. 2000. What causes
deceleration of coronal mass ejection. Bulletin of the American Astronomical
Society 32: 842.
Mohamad Ansor, N. &
Hamidi, Z.S. 2022. Effects of CME-induced geomagnetic storm on geomagnetic
induced current at high and middle latitudes. Journal of Physics: Conference
Series 2287: 012035.
Mohamad Ansor, N., Hamidi,
Z.S. & Shariff, N.N.M. 2023. Characteristics of different groups of
flare-CME in the minimum to rising phase of solar cycle 24. Sains Malaysiana 52(3): 981-992.
Mohamad Ansor, N., Hamidi,
Z.S. & Shariff, N.N.M. 2019. The impact on climate change due to the effect
of global electromagnetic waves of solar flare and coronal mass ejections
(CMEs) phenomena. Journal of Physics: Conference Series 1298: 012019.
Nicewicz, J. & Michalek, G. 2016. Classification
of CMEs based on their dynamics. Solar Physics 291(5): 1417-1432.
Sheeley, N.R., Walters, J.H., Wang, Y‐M. &
Howard, R.A. 1999. Continuous tracking of coronal outflows: Two kinds of
coronal mass ejections. Journal of Geophysical Research: Space Physics 104(A11): 24739-24767.
Shen, F., Wu, S.T., Feng, X. & Wu, C-C. 2012.
Acceleration and deceleration of coronal mass ejections during propagation and
interaction. Journal of Geophysical Research: Space Physics 117(A11).
https://doi.org/10.1029/2012JA017776
Solar and Heliospheric Observatory. 2020. Measuring the Motion of a Coronal Mass Ejection.
Accessed on 27 July 2020.
Syed Ibrahim, M., Shanmugaraju,
A., Moon, Y-J., Vrsnak, B. & Umapathy, S. 2018.
Properties and relationship between solar eruptive flares and coronal mass
ejections during rising phase of solar cycles 23 and 24. Advances in Space
Research 61(1): 540-551.
Temmer, M., Scolini, C.,
Richardson, I.G., Heinemann, S.G., Paouris, E., Vourlidas, A., Bisi, M.M., Al-Haddad, N., Amerstorfer, T., Barnard, L., Burešová, D., Hofmeister,
S.J., Iwai, K., Jackson, B.V., Jarolim, R., Jian,
L.K., Linker, J.A., Lugaz, N., Manoharan, P. K.,
Mays, M.L., Mishra, W., Owens, M.J., Palmerio, E.,
Perri, B., Pomoell, J., Pinto, R.F., Samara, E.,
Singh, T., Sur, D., Verbeke, C., Veronig, A.M. &
Zhuang, B. 2023. CME propagation through the heliosphere: Status and future of
observations and model development. Advances in Space Research. In
Press. https://doi.org/10.1016/j.asr.2023.07.003
Tousey, R. 1973. The Solar Corona. Space Research
XIII 2: 713-730.
Vršnak, B., Ruždjak,
D., Sudar, D. & Gopalswamy, N. 2004. Kinematics of coronal mass ejections
between 2 and 30 solar radii. Astronomy & Astrophysics 423(2):
717-728.
Webb, D.F. & Howard, T.A. 2012. Coronal mass ejections:
Observations. Living Reviews in Solar Physics 9(3): 83.
Zhang, J., Dere, K.P., Howard, R.A. & Vourlidas, A. 2004. A study of the kinematic evolution of
coronal mass ejections. The Astrophysical Journal 604(1): 420-432.
*Corresponding author; email: zetysh@uitm.edu.my
|